
Master Thesis Software Engineering

Intelligent fuzzing of web
applications

Michel de Graaf
michel@re-invention.nl

Supervisor:
Tijs van der Storm

Publication status:
Public domain

September 15, 2009

Abstract

Fuzz testing (also known as fuzzing) is a blackbox testing technique for
finding flaws in software by feeding random input into applications and
monitoring for crashes.

Programs that generate fuzz data are called fuzzers and they generate input
data that test engineers might not think of. There are two categories of
fuzzers, unintelligent (UF) and intelligent (IF). The difference lies in the
method of input data generation. UF has no prior knowledge of the input
format while IF knows the format which enables it to specify semi-valid data
for what its attempting to fuzz.

Sources like [21, 20] have indicated that user input in web applications are
a huge problem. Fuzzing might prove to be a valuable method for finding
flaws in these types of applications. However, the research that has been
done on fuzzing web applications [6] have made use of UF. In this thesis we
will introduce and evaluate an IF method based on validators.

Many modern web applications are developed using specialized web frame-
works that make use of validators that validate incoming input before further
actions are taken by the application.

Our hypothesis is that the data generated by a UF will often be evaluated as
invalid by validators that are in place and will therefore have superficial code
coverage. Intelligent fuzz data that is generated within validator constraints
will have better code coverage and will therefore trigger more flaws.

In order evaluate the effectiveness of our IF method we have fuzzed a set
of typical web applications using 3 different fuzzing methods: UF, our IF
method and fuzzing with manually defined fuzz format specifications.

The results of this experiment indicate that our method of intelligent fuzzing
performs marginally better while requiring more manual effort. This manual
effort can be further automated, which would make it a valuable addition
to fuzzing web applications.

Keywords: Fuzzing, Intelligent fuzzing, web applications

Contents

Preface 3

1 Introduction 5
1.1 Motivation . 5
1.2 Research Questions . 7

2 Background 8
2.1 Practical fuzzing successes . 9
2.2 Fuzzer types . 9
2.3 Semi-valid fuzz data generation 10
2.4 Fuzz data for web applications 10

3 Research method 12
3.1 Intelligent fuzz data generation using validators 12
3.2 Analysing web fuzzing results 14
3.3 Expected flaws and categorization 15

4 YAFT: Yet Another Fuzzing Tool 17
4.1 Form crawler . 18
4.2 Script generator . 18

4.2.1 Fuzz data generation 21
4.3 Form fuzzer . 22
4.4 YAFT in action . 23

4.4.1 Finding forms to fuzz 23
4.4.2 Generating an attack script 24
4.4.3 Exercising forms . 24
4.4.4 Identification and categorization of flaws 25

4.5 Intelligent and Unintelligent fuzzing with YAFT 25

5 Experiment 27
5.1 Test environment . 27

1

5.2 Results . 30
5.3 Time indication . 32

6 Analysis and discussion 34
6.1 Flaw categorization . 35
6.2 Threats to validity . 35

7 Conclusion 37
7.1 Proposals for future work . 37

Bibliography 40

A Pre-condition login script 41

B A generated attack script 42

C Server logs during a successful fuzzing attempt 43

List of Figures

4.1 An overview of the YAFT components with their in and output. 18
4.2 An overiew of the in- and out-put of the YAFT fuzzer com-

ponent. 22

5.1 Experiment workflow . 29

List of Tables

5.1 web applications used in case study 28
5.2 Fuzzing results . 30

2

5.3 Fuzzing results manual fuzz data specification 31
5.4 Detected flaws catogorized by method 31
5.5 Indication of time spent on fuzzing 32

Listings

3.1 Arbitrary validators in a Ruby on Rails model 14
4.1 A generated attack script . 19
4.2 A validator that uses a regular expression in a Ruby on Rails

model . 21
4.3 Searching for forms to fuzz using YAFTs form crawler 24
4.4 Generating an attack script 24
4.5 Fuzzing a form using YAFT 24

3

Preface

I would like to thank my supervisor: Tijs van der Storm, for his feedback
and advice during the writing of this thesis. I would also like to thank Harm
de Laat and Ralph Deguelle of Kabisa ICT for allowing me to work at their
office and letting me use their web applications for experiments. Of course
I have to thank my parents for supporting me this last year (and the other
24 years for that matter).

I am also very grateful to Mark Sanger, my internet friend from across the
pond, for finding lots of linguistic mistakes in this thesis.

And at last, but not least, i’d like to thank my classmates Lars de Ridder,
Jeroen van Schagen and Alex Hartog for making the time more enjoyable.
Together we have solved problems with LaTeX, gave each other feedback,
and of course, performed some high quality procrastination in the form
of useless discussions and sharing the loot of our visits to the wild wild
internets.

4

Chapter 1

Introduction

Fuzz testing (also known as fuzzing) is a popular blackbox testing technique
for feeding random input into applications. The criteria for reliability are
simple: If the program hangs or crashes it fails the test, otherwise it passes.
[15]

Programs that generate fuzz data are called fuzzers and they generate input
data that test engineers might not think of. Test engineers often make
implicit assumptions about the data that will or can be fed to the application
under test. Fuzzers will try anything which makes fuzzing a crude but cost
effective technique for finding flaws in software.

1.1 Motivation

Fuzzing has successfully been used to discover flaws in a wide set of software
applications [15, 16, 14, 4]. This is evidence that many applications are not
hardened enough to handle random data.

With the current growth of demand in web applications and market pressure
that demands very short time-to-market, the testing of web applications is
often neglected by developers [12]. And in its current form is considered too
time consuming and lacking a significant payoff [7]. This triggers the need
for efficient and cost effective testing methods.

Several sources like [21,20] have indicated that user input in web applications
are a huge problem. Therefore, fuzzing might be a valuable addition for the

5

detection of flaws in web applications.

When an application doesn’t do what it is supposed to do and this unwanted
behavior is observable, a failure has occurred. A failure is caused by a defect
in the logic of the application. In this thesis we will use the term flaw and
defect interchangeably.

Flaws in web applications are triggered by user input that puts the web
application in an undefined state causing unwanted behavior. For example:
A user fills in a web form that contains exotic characters that will trigger
an uncatched exception after processing. As a result all the text the user
typed in is lost and the user has no clue what he did wrong.

There has been limited research on the effects of fuzzing web applications.
The research that has been done by Hammerslands [6] shows that web ap-
plications are indeed vulnerable to fuzzing. However, the fuzzer used in
Hammerslands research is of the most basic form, that is: randomly gen-
erate data and submit it to an application with no prior knowledge of the
format. These are called unintelligent fuzzers (UF). Intelligent fuzzers (IF)
know the format, which enables it to specify semi-valid data for what its
attempting to fuzz.

This brings up an interesting question: what form of fuzzing will be more
effective in detecting flaws in typical web applications?

We could see that an IF could potentially proceed further along code paths
and get better code coverage and thus find more flaws. However, UF make no
assumptions about the input data and from this perspective it’s convincing
to think such an approach could cover far outside the bounds of what the
developers of the application anticipated [9].

Many modern web applications are developed using specialized web frame-
works with the premise of increased maintainability and productivity. Many
of these frameworks make use of validators that validate incoming input be-
fore further actions are taken by the application. One could see that when
fuzzing a web application that has validators in place, most of the fuzzing
attempts will be stopped by the validators as they are intended to stop
invalid input from entering the application flow.

Our hypotheses is that when typical web applications are fuzzed with fuzz-
data that is generated within the constraints of the validators that are in
place, more and different kind of flaws will be found than pure random
fuzzing.

6

Hypothetically speaking, when you use an UF fuzzer and let it fuzz an
application for an unlimited amount of time, eventually the same fuzz data
that will be generated by a IF will be generated by a UF since the possibilities
of random data are infinite. Or to quote the infinite monkey theorem1:

If you put an infinite number of monkeys at typewriters, even-
tually one will bash out the script for Hamlet.

For fuzzing to be cost effective we want to detect as many flaws as is possible
in a limited amount of time using a limited amount of resources.

1.2 Research Questions

In this thesis we will introduce and evaluate a method of fuzzing web appli-
cations that is based on intelligent fuzz data. This fuzz data is generated
within pre-condition constraints that are extracted from the application un-
der test. With this method we are looking to answer the following questions
to evaluate the effectiveness of IF using validators as fuzz data specification.

• Q1: Will more flaws be found in typical web applications using IF
than UF.

• Q2: Does IF find different flaws than UF?

The rest of this thesis is structured as follows: First we will discuss the
background and successes of fuzzing and related research. After that we
will introduce the notion of intelligent and unintelligent fuzzers and how
validators can be used to generate semi-valid fuzz data. Then we will discuss
our research method and introduce our IF implementation called YAFT.
This will be followed by the results of our experiments and finalized with an
analysis and some interesting ideas for future work.

1The infinite monkey theorem: http://en.wikipedia.org/wiki/Infinite_monkey_

theorem

7

http://en.wikipedia.org/wiki/Infinite_monkey_theorem
http://en.wikipedia.org/wiki/Infinite_monkey_theorem

Chapter 2

Background

The idea of fuzzing is originated by professor Barton Miller at UW Madison
in 1989. It came up while he was logged in to a remote terminal that had
connection issues due to noise on the telephone line. The line noise mangled
up terminal commands and caused common UNIX programs to crash. This
insight triggered the first fuzzing research as an assignment for his graduate
Advanced Operating System class in 1990.

His students managed to crash one third of common command-line utilities
by feeding them random input in seven different versions of UNIX [15].The
research was repeated in 1995 [16] with the addition of X-Window GUI
applications. The results showed improvement in the reliability of basic
UNIX utilities but there were still significant rates of failure (9%). From the
38 X GUI applications that were fuzzed, 58% crashed, indicating that GUI
applications are more error prone. Miller et al. has since then done similar
research on the reliability of Windows NT [4] and Mac OS X [14] and they
showed the same kind of results.

Fuzzing has become particularly popular in the software security industry for
finding vulnerabilities. The flaws that are found when fuzzing applications
that are written in unmanaged languages (e.g. c and c++) are often effecting
memory safety and result in buffer overflows that are likely to lead to severe
vulnerabilities. The detection of these vulnerabilities is the main motivator
of fuzzer development and research.

8

2.1 Practical fuzzing successes

Big software vendors such as Microsoft [11, 8] and open source projects
(e.g. GNU/Linux [13]) have integrated fuzzing into their quality assur-
ance processes. Also the research on fuzz-testing that is done by initia-
tives such as “Month of BrowserBug (MOBB)”1, “Month of the Kernel
Bugs(MOKB)”2,“Month of PHP Bugs”3 and “Month of Apple Bugs”4 have
especially shown the effectiveness of fuzzing software by releasing new secu-
rity vulnerabilities each day during a month.

Beside conventional software applications, fuzzing has been successfully ap-
plied to wireless network drivers [10] and networking protocols [1]. The most
recent high profile exploit that has been discovered using fuzzing techniques,
and made public at BlackHat 20095, is the iPhone SMS exploit6. This ex-
ploited flaw allowed attackers to execute arbitrary commands as a root user
effectively taking ownership of the device.

2.2 Fuzzer types

As mentioned in the introduction, there are so called unintelligent (UF)
and intelligent fuzzers (IF). The difference is that UF have no prior knowl-
edge about the data format and IF do have knowledge about the data for-
mat. Since IF have knowledge about the format they can produce semi-
valid/invalid data (semi-valid is the same as semi-invalid in this context).
When this semi-valid data is fed to an application it should potentially pro-
ceed further along code paths and get better code coverage and therefore
trigger more flaws.

As Howard et al. mentions [9], there is always a trade-off between IF and
UF. IF takes more work to implement and makes assumptions about the
format. This potentially weakens the fuzzers efficiency to detect flaws since
it could make the same poor assumptions the programmers did.

1Month of Browser Bugs: http://browserfun.blogspot.com/ (2006)
2Month of Kernel Bugs: http://kernelfun.blogspot.com/ (2006)
3Month of PHP Bugs: http://www.php-security.org/ (2007)
4Month of Apple Bugs: http://applefun.blogspot.com/ (2007)
5BlackHat security conference: http://www.blackhat.com/
6Blackhat 2009 iPhone SMS exploit presentation: http://www.blackhat.com/

presentations/bh-usa-09/LACKEY/BHUSA09-Lackey-AttackingSMS-SLIDES.pdf

9

http:// browserfun.blogspot.com/
http:// kernelfun.blogspot.com/
http:// www.php- security.org/
http:// applefun.blogspot.com/
http://www.blackhat.com/
http://www.blackhat.com/presentations/bh-usa-09/LACKEY/BHUSA09-Lackey-AttackingSMS-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/LACKEY/BHUSA09-Lackey-AttackingSMS-SLIDES.pdf

2.3 Semi-valid fuzz data generation

UF generates pure random data and IF generates semi-valid data. There are
two main methods for generating semi-valid data. The first method is called
mutation-based fuzzing. Mutation based fuzzing takes known good collected
data (files, captured input, network traffic, etc) and then modifies it. These
modifications (or mutations) may be random or heuristic. Examples of
heuristic mutations include replacing small strings with longer strings or
changing integer values to either very large or very small values [17].

The other method is called generation-based fuzzing. Generation-based fuzz
data starts from a specification/format description and constructs fuzz data
from these specifications. The main point is to generate effective and diverse
fuzz data that (hopefully) will invoke a flaw in the application under test,
but not make the data invalid to the degree that it causes the application
under test to discard the incoming data [17].

2.4 Fuzz data for web applications

There is a wide range of tools that support fuzzing web applications but there
are no empirical studies of their findings. Some of these tools (e.g. Burp
Intruder7 and WSFuzzer8) claim to use fuzzing techniques for detecting SQL
injection9 (SQLi), cross site scripting10 (XSS) and command injection11 vul-
nerabilities. However, these tools are enumerating known vulnerable strings.
Enumeration testing might be a better way to find these kinds of flaws but
they are not to be confused with fuzzing.

In this thesis we will make use of generation-based fuzz data to fuzz web
applications. We have chosen this method over mutation-based fuzz data
because it requires less manual effort to generate fuzz data than to collect
and mutate known valid data.

In order to mutate data to semi-valid data you will need valid data. But
how can we collect valid data in a web application? Let’s presume that

7Burb Intruder: http://portswigger.net/intruder/
8WSFuzzer: http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
9SQL injection: http://www.owasp.org/index.php/SQL_Injection

10Cross site scripting: http://www.owasp.org/index.php/Cross_Site_Scripting_

Flaw
11Command injection: http://www.owasp.org/index.php/Command_Injection

10

http://portswigger.net/intruder/
http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project
http://www.owasp.org/index.php/SQL_Injection
http://www.owasp.org/index.php/Cross_Site_Scripting_Flaw
http://www.owasp.org/index.php/Cross_Site_Scripting_Flaw
http://www.owasp.org/index.php/Command_Injection

we will use web forms as an entry point for valid data in web applications.
Then there is still a need for an oracle that can evaluate the validness of the
entered data.

Fuzzers like OWASPs12 WebScarab13, Suru14 and SPIKE Proxy15 solve the
problem of harvesting valid input data by introducing a man in the mid-
dle proxy server that captures HTTP16 requests that are sent from a web
browser operated by a human tester that submits valid data.

Our IF will generate semi-valid data by using validators that are extracted
from the target application as a specification for the generation of semi-valid
fuzz data. This process can be automated so no interaction from a human
tester is required.

12The Open Web Application Security Project (OWASP) is a worldwide free and open
community focused on improving the security of application software. Online at: http:

//www.owasp.org
13WebScarab: http://www.owasp.org/index.php/Category:OWASP_WebScarab_

Project
14Suru: http://www.sensepost.com/research/suru/
15SPIKE Proxy: http://www.immunitysec.com/resources-freesoftware.shtml
16HTTP - Hypertext Transfer Protocol: http://www.w3.org/Protocols/

11

http://www.owasp.org
http://www.owasp.org
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.sensepost.com/research/suru/
http://www.immunitysec.com/resources-freesoftware.shtml
http://www.w3.org/Protocols/

Chapter 3

Research method

In the previous chapter we introduced the notion of IF. Now is a good time
to step back and see how we can apply this to web applications.

First we will discuss the fuzz entry points of web applications. Then we will
describe how we will generate intelligent fuzz data using validators as fuzz
data specification. Finally, we will discuss how we will analyze the fuzzing
results and categorize detected flaws.

3.1 Intelligent fuzz data generation using valida-
tors

As indicated by [21, 20], user input is a problem in web applications. The
primary way for users to insert data into web applications are forms. Forms
are also, the place where flaws tend to propagate after execution. Therefore,
we have identified forms as the primary attack vector in this research. Other
potential web application fuzzing vectors are cookies, URLs and webservices
but they are left out of the scope in this research.

Forms are described in HTML and when they are submitted by the user they
are sent by the browser over the HTTP protocol to the web application.
When input data arrives at a web application it is typical that the web
application takes some steps to check if the incoming input data is valid
before other actions are taken (validation input). When the incoming data
is found to be invalid, the application will return some warning message and

12

discard the invalid data. The functions that evaluate if the incoming data
is valid are called validators in this thesis.

Forms typically contain one or more fields and validators are used to vali-
date individual fields. If one of the fields is evaluated as invalid the whole
submitted form is seen as incorrect and the application will not proceed
further along the projected code path.

The fuzzer used in the research of Hammersland [6] is primarily aimed at
forms. But the input data that it generates is pure random. Therefore, we
can categorize this fuzzer as unintelligent. Our hypothesis is that the data
generated by Hammersland’s fuzzer will often be evaluated as invalid by
validators that are in place and will therefore have superficial code coverage.

Many modern web applications are developed using some kind of web specific
framework. Many of these frameworks have dedicated validator functions
that can be used to validate common input formats. We propose that these
validators can be used to create an intelligent form fuzzer that has a better
code coverage and will therefore potentially trigger more flaws.

In order to answer research question Q1 we have chosen to test a set of
typical web applications written in the popular open source web-framework
Ruby on Rails1. Ruby on Rails is a state of the art web-framework written in
the dynamic programming language Ruby2. The framework has a strong set
of conventions that simplify the identification and extraction of validators
that belong to a specific form field.

Ruby on Rails has a Model View Controller (MVC) architecture that di-
vides application logic (Model) from output (View) that are tied together
by controllers. The models in Ruby on Rails are mapped to database tables
using Object-relational mapping (ORM) [18]. In the models, the validators
are defined using a Domain-specific language (DSL) [2] embedded in Ruby.

A DSL is a specialized language for a particular domain. An embedded (or
internal) DSL is a DSL that is implemented using a subset of syntax of a
general purpose language such as Ruby.

Listing 3.1 gives an example of arbitrary validators that might be defined
on a user model. In this example you see a user model that has 3 validators.
Validators are mapped to form fields and database columns with the same
name.

1Ruby on Rails: http://rubyonrails.org
2The Ruby programming language: http://ruby-lang.org

13

http://rubyonrails.org

1 class User < ActiveRecord : : Base
2 v a l i d a t e s c o n f i r m a t i o n o f : password
3 v a l i d a t e s l e n g t h o f : username , : with in => 3 . . 4 0
4 v a l i d a t e s f o r m a t o f : email ,
5 : with => /\w@\w\ .\w{2}/
6 end

Listing 3.1: Arbitrary validators in a Ruby on Rails model

Line 1 of listing 3.1 shows the sub-classing of ActiveRecord::Base (a Ruby
on Rails library for ORM mapping) to create an ORM mapping to the
database table users.

On line 2 the validator validates_confirmation_of is defined that requires
that the value of an incoming form field password_confirmation is identical
to the value of the form field password.

Line 3 shows a validator that validates that the form field username has a
length within 3 to 40 characters. And finally, in line 4+5 we have an example
of a validator that uses regular expressions3 (in this case /\w@\w\.\w{2}/)
to validate the format of the form field email.

These validations are triggered when data is requested to be persisted in
the database. This is typically the case when incoming form requests are
handled. If one validator validates incoming data for a field as invalid than
the data will not be persisted in the database and the end-user is presented
with a warning message. This warning is not to be seen as a flaw since the
invalid input is correctly handled and the user is presented with a graceful
warning message.

3.2 Analysing web fuzzing results

As indicated by Hammersland [6] and Stuttard et al. [19] analyzing the
results of web application fuzzing is a hard problem to automate. When
fuzzing non-web applications it is possible to attach debuggers and monitor
the target application for unexpected behavior (crashes, hangs). This is not
the case in web applications where incoming requests are typically served
by a web application server that does not crash when a fault is triggered
in the web applications logic. Instead, they return HTTP status codes as

3Regular expressions: http://www.regular-expressions.info/

14

described in section 10.4 of RFC26164.

The status codes in the 5xx range are reserved for requests where “the server
failed to fulfill an apparently valid request“5. Well-behaved web applications
will return the appropriate status code when a triggered defect escalates
beyond rescue.

The fuzzer used in this thesis will monitor the returned HTTP status codes
and will report responses with the status code in the 5xx range as erroneous.
In combination with the error logs from the web server that contain stack
traces of crashes, we can determine the cause of the defect.

3.3 Expected flaws and categorization

We categorize detected and identified flaws in the same categories as Ham-
merslands fuzzing research [5]:

• E1 Resource exhaustion: This category manifests when flaws cause
increased response time and possibly no response at all. This is often
caused by endless loops or non-terminating recursion.

• E2 Failure to check return values: Caused by not catching exceptions.
Causing the user to see cryptic exception messages and stack traces.

• E3 No server side validation of input: Caused by not validating or
sanitizing incoming data. Depending on the flaw the user will experi-
ence this the same way as category E2.

In this research we can only detect flaws that will immediately propagate
after a fuzzing attempt. However, faults can propagate in other locations
of the target web application. A primary example of these kind of flaws
are flaws that are caused by insufficient data validation. Data of a fuzzing
attempt is persisted in a database and later used on another page that
contains a function that attempts to parse the persisted fuzz data but fails,
resulting in an uncatched exception.

A possible solution for this problem is to crawl the entire web application
and store the URLs of unique pages before a fuzzing attempt. And then,

4RFC2616: http://www.ietf.org/rfc/rfc2616.txt
5RFC2616: http://www.ietf.org/rfc/rfc2616.txt

15

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt

after the fuzzing attempt, visit the earlier stored URLs to see if any of them
return an erroneous response. We leave this implementation as future work.

16

Chapter 4

YAFT: Yet Another Fuzzing
Tool

In this chapter we introduce the fuzzer we developed for this thesis. It is
written in the dynamic programming language Ruby and makes use of sev-
eral open source (Ruby) libraries (also, known as gems in the Ruby world).
The fuzzer could just as well be implemented in other languages and make
use of existing fuzz frameworks such as Sully1 ,Spike2 or Peach3. However,
since we are concentrating our experiment on web applications written in
Ruby on Rails, we prefer the flexibility and support Ruby provides us when
interacting with Ruby on Rails applications.

YAFT (Yet Another Fuzzing Tool) has support for unintelligent (random)
and intelligent fuzz data generation. It generates test cases (we will call
them attack scripts) that are described in an embedded ruby DSL allowing
the tester to manually define or fine-tune the fuzz data specifications of test
cases.

YAFT is divided in 3 standalone command line applications as seen in figure
4.1. When used together they semi-automate the process of fuzzing. In the
upcoming sections we will discuss the individual parts of YAFT.

1Sully fuzzer framework: http://code.google.com/p/sulley/
2Spike fuzzer toolkit: /urlhttp://www.immunityinc.com/resources-freesoftware.shtml
3Peach fuzzer: http://peachfuzzer.com/

17

http://code.google.com/p/sulley/
http://peachfuzzer.com/

Form Crawler

Test
generator Fuzzer

http://application.com

Application under test

Input
http://application.com/action1
http://application.com/action2
http://application.com/action3
...

Output

List of forms in application

Input

Attack scripts

Output Input

Report

Output

In/out-put

Component

Legenda

Figure 4.1: An overview of the YAFT components with their in and output.

4.1 Form crawler

The Form crawler component (see figure 4.1) is used to search for forms
to fuzz in web applications. It simply visits every link it encounters on a
page recursively and keeps track of all the unique forms it finds. It can
be configured to execute actions (such as logging in) before crawling and
can accept a list of excluded sub-strings that will be ignored in links when
crawling. This exclude list can be used to stop the crawler from logging out
when crawling as an authenticated user and triggering destructive functions
such as deleting vital database records. The output of this component is a
list of unique URLs where forms are located that can be fuzzed.

4.2 Script generator

The Test generator component (see figure 4.1) is used to generate attack
scripts for web forms. It takes a list of URLs (provided by the Form crawler)
and generates an attack script for each form it finds on the given URLs.

An attack script describes how a form will be fuzzed and is defined in an
embedded Ruby DSL. Listing 4.1 shows an example of an attack script
generated by the test generator.

18

1 TestForm [” http : / / 8 0 . 2 5 5 . 2 5 1 . 9 3 / users , ”// form [@id=’ e d i t u s e r ’] ”] do
2 name ” new user ”
3 ac t i on ” http : / / 8 0 . 2 5 5 . 2 5 1 . 9 3 / us e r s ”
4 method ” post ”
5 p o s t c o n d i t i o n s : n o i n v a l i d s t a t u s c o d e s
6 cook i e ”52 edd1182f32449b944b5acce65ca9a2a9b7a46f \n”
7
8 password = / .{4 , 4 0}/ . gen
9

10 f i e l d s do
11 input ’ r e t u r n a c t i o n ’ , random
12 input ’ user [t e r m s o f s e r v i c e] ’ , random
13 input ’ account type ’ , random
14 input ’ user [l o g i n] ’ , / .{3 ,40}/
15 input ’ user [emai l] ’ , /\w{1 ,10}@\w{1 ,10}\ .\w{2}/
16 input ’ user [password] ’ , password
17 input ’ user [password conf i rmat ion] ’ , password
18 input ’ user [f i r s t n a m e] ’ , random
19 input ’ user [middle name] ’ , random
20 input ’ user [last name] ’ , random
21 input ’ user [company name] ’ , random
22 input ’ d e v i c e p e r m i s s i o n [t e c h n i c a l] ’ , random
23 input ’ d e v i c e p e r m i s s i o n [channe l s] ’ , random
24 input ’ d e v i c e p e r m i s s i o n [h i s t o r y] ’ , random
25 input ’ a c c o u n t r e s e l l e r i d ’ , random
26 end
27 end

Listing 4.1: A generated attack script

An attack script describes a form and its fuzzing specifications. A form has
its own unique identifier that is formed by combining the URL location of
the form and the XPATH4 location in the HTML document as seen on line
1 of listing 4.1.

Most forms have a name defined in its HTML specification, this name is
displayed in the attack script (see line 2 of 4.1). It has no other function
than providing additional identification information for the tester.

Form requests can be sent in several ways over the HTTP protocol. The
main methods are GET,PUT,POST and DELETE. This collection of HTTP
“verbs” is heavily used in modern web applications that are build around
the REST principles [3]. The HTTP method of sending the fuzz request is
described on line 4 of listing 4.1.

4XPATH specifications: http://www.w3.org/TR/xpath

19

http://www.w3.org/TR/xpath

When a form has the GET verb as method value, the form field names
and fuzzing values are encoded as part of the fuzzing URL as described
in RFC17385 and RFC 39866.

Each attack script requires a defined set of post-conditions (line 5 of listing
4.1). After a fuzzing attempt they evaluate the returning HTTP response
validness. By default the pre-condition :no_invalid_status_codes is used.
This method evaluates HTTP status codes in the 5xx range as erroneous.
This alone is often not enough to identify a flaw after a erroneously flagged
fuzzing attempt. The log files of the web application server often yield more
interesting information in the form of stack traces and error messages.

Many forms are only available in web applications after a user has signed
in. When a user is logged in on a web application, the user authentication
information, and other temporal information is stored in cookies7. Cookies
are used to maintain state between HTTP requests since HTTP is a stateless
protocol. Meaning that each HTTP request made is fundamentally detached
from requests that came before, and unrelated to requests that will follow.
In order to maintain session state during fuzzing, the session cookie is stored
in the attack script as seen on line 6 of listing 4.1.

During our initial testing of YAFT we encountered issues with fuzzing forms
that made use of nonces. A nonce is a randomly generated, cryptographic
token that is used in forms to thwart cross site scripting attacks. When a
form contains a nonce and is submitted, the web application will check if
the nonce is present in the submitted form before continuing any further.

This means that our fuzz request must contain a valid nonce in order to
get any code coverage. We solved this problem by scanning the field names
of the forms for known fields that must contain nonce tokens. When such
a field is found, a special keyword is used in the attack script as the field
value.

For example: In the popular blogging platform Wordpress8 the field _wpnonce
is used in forms across the application. When YAFTs script generator en-
counters such a field, it will use input’_wpnonce’, nonce("_wpnonce") as
fuzz data format description for that field.

5RFC 1738: http://www.ietf.org/rfc/rfc1738.txt
6RFC 3986: http://tools.ietf.org/html/rfc3986
7Cookies RFC: http://www.ietf.org/rfc/rfc2109
8WordPress is a state-of-the-art publishing platform with a focus on aesthetics, web

standards, and usability: http://wordpress.org/

20

http://www.ietf.org/rfc/rfc1738.txt
http://tools.ietf.org/html/rfc3986
http://www.ietf.org/rfc/rfc2109
http://wordpress.org/

When the keyword nonce("_wpnonce") is executed by YAFT’s form fuzzer
it will first fetch the page where the form is located ,extract the nonce token
and use it in the fuzz request resulting in a semi-valid form request.

4.2.1 Fuzz data generation

The main fuction of attack scripts is to describe the fuzzing format of form
fields. Using this format description; semi-valid random data is generated.

The random data our fuzzer uses is generated using the RFuzz9 Ruby li-
brary, this library uses the ARCFOUR10 (RC4) stream cipher to generate
pseudorandom data. This cipher will yield the same sequence of output
when given the same seed. This makes replaying the attack scripts possible.

In order to generate semi-valid data for IF we use a subset of the regular
expression language to describe the format of intelligent fuzz data. The
format of our intelligent fuzz data is extracted from the validators that are
present in the (ORM) models of target applications. For instance: in listing
4.2 we have a Ruby on Rails model for the class User. This model contains
only one validator on line 2 that validates the format of the field email by
using the regular expression /\w{1,10}@\w{1,10}\.\w{1,2}/.

1 class User < ActiveRecord : : Base
2 v a l i d a t e s f o r m a t o f : email , with => /\w{1 ,10}@\w{1 ,10}\ .\w{1 ,2}/
3 end

Listing 4.2: A validator that uses a regular expression in a Ruby on Rails
model

When an attack script is generated that contains the field user[email]
our attack script generator can deduce to what model the field belongs
by inspecting the source of the target application. In this case the field
user[email] belongs to the model user and the validator on line 2 of listing
4.2 .

The attack script generator uses the regular expression from the validator
to specify semi-valid fuzz data for the email field in the attack script. For
example, the regular expression /\w{1,10}@\w{1,10}\.\w{1,2}/ will gen-
erate the following random email address: taurodont@overrake.eu.

9RFuzz website: http://rfuzz.rubyforge.org/
10ARCFOUR/RC4/ARC4 description: http://www.mozilla.org/projects/

security/pki/nss/draft-kaukonen-cipher-arcfour-03.txt

21

http://rfuzz.rubyforge.org/
http://www.mozilla.org/projects/security/pki/nss/draft-kaukonen-cipher-arcfour-03.txt
http://www.mozilla.org/projects/security/pki/nss/draft-kaukonen-cipher-arcfour-03.txt

This form of generation-based fuzz data gives us great flexibility when defin-
ing the format of individual form fields. When we want to generate pure
random data with random lengths the keyword random is used.

More examples of fuzz data specification using regular expressions can be
found in listing 4.1. This attack script is generated using the validators that
are defined in the Rails model in listing 3.1. On line 14 the field user[login]
will generate random strings with a length that is between 3 and 40. On line
16 and 17 we find the variable password as fuzz format specification. This
variable is used there because the validator validates_confirmation_of :password"
(see line 2 of listing 3.1) is defined on the field user[password]. This val-
idator requires that the field user[password_confirmation] has the same
value as the field user[password]. Therefore, a random string with a length
between 3 and 40 characters is generated and stored in the variable password
on line 8 that can be used for both fields.

4.3 Form fuzzer

The form fuzzer component is a console application that reads in attack
scripts and executes them. See figure 4.2 for an overview of the in and
out-put of a fuzzing attempt.

A fuzzing attempt (or fuzzing attack) can be described as follows: the YAFT
fuzzer component reads in the attack script and generates fuzz data based
on the specified fuzz data specifications in the attack script. It sends a
HTTP request to the target application with the fuzz data and waits for
a response. When a response is returned by the target application it is

Fuzzer web-application

Attack script(s)

Input

Output

Fuzz report

Output

Exception logs

Request

Response
Target

Component

Legenda

In/out-put

Figure 4.2: An overiew of the in- and out-put of the YAFT fuzzer component.

22

evaluated for validity. The validity is based on the post-conditions that are
defined in the attack script.

The fuzzer will return a report with the erroneous request that were invoked
during the fuzzing attempt including the fuzz data used for the fuzzing
requests. This report can be used in combination with the exception logs
from the target application to identify unique flaws.

In order to exercise the forms with a wide range of random fuzz data, the
attack scripts must be executed multiple times. During our initial tests
we tried to find an optimal amount of fuzzing attempts per test case. We
noticed that when an attack script triggered flaws, they usually did not yield
any other flaws no matter how many fuzzing attempts were executed (up
to 10.000 attempts). Some occurrences did yield different kind of flaws but
they were all detected within 100 fuzzing attempts.

For the experiment we settled on 100 fuzzing attempts per test case but
further research can be done on this subject. We leave this as future work.

4.4 YAFT in action

Now that we reviewed YAFTs components we can show by example how
the whole IF process works. In this short walkthrough we will start with
finding forms to fuzz and end with categorizing a triggered flaw.

The target application in this example is Mephisto. This web application
is also, tested in the main experiment of this thesis. See table 5.1 for more
information about Mephisto.

4.4.1 Finding forms to fuzz

First we need to detect forms in the target application to fuzz. We do
this by running the YAFT form crawler. See listing 4.3 for the commands
and results. The flag -pre../login_admin.rb is used to indicate that the
crawler needs to login in before crawling. This pre-condition script can be
found in appendix A.1.

The flag -exceptions "logout,delete" is used to indicate that the crawler
must not visit links that contain the sub-strings “logout” and “delete”.

23

1 $ ya f t crawl http :// l o c a l h o s t :3000 −−pre . . / log in admin . rb −−except i on s
2 ” logout , d e l e t e ”
3 2 forms found on the f o l l o w i n g URLs :
4 http :// l o c a l h o s t :3000/ , http :// l o c a l h o s t :3000/2009/7/16/ he l l o−world

Listing 4.3: Searching for forms to fuzz using YAFTs form crawler

In the example on line 4 we see that the crawler has found two forms.
We will use the URL http://localhost:3000/2009/7/16/hello-world
to continue this walkthrough.

4.4.2 Generating an attack script

The next step is to generate an attack script. We do this by feeding the
URL we found to the script generator as shown in listing 4.4. The flag
-rails ~/Sites/mephisto/ is used to indicate that we want to generate a
intelligent attack script. It points the fuzzer to the source code of the target
application so it can extract validators and translate them to fuzz format
specifications.

The generated attack script can be found in appendix B.1.

1 $ ya f t generate http :// l o c a l h o s t :3000/2009/7/16/ he l l o−world −− r a i l s ˜/ S i t e s / mephisto /
2 One form found
3 Generated t e s t case in ˜/ fo rms l oca lho s t30002009716he l l o−world 14a5d39 . rb

Listing 4.4: Generating an attack script

4.4.3 Exercising forms

Now that the attack script is generated we can start exercising the form
that is described in the attack script. In this example we will run the attack
script only once by using the flag --times 1. By default an attack script
will be executed 100 times in order to expose the form to a wide range of
fuzz data. See listing 4.5 for the console output of the fuzzing attempt.

1 $ ya f t e x e r c i s e f o rms l oca lho s t30002009716he l l o−world 14a5d39 . rb
−−t imes 1

2 INFO: Found 1 form (s) to e x e r c i s e
3 INFO: Exe r c i s i ng form http :// l o c a l h o s t :3000/2009/7/16/ he l l o−world |
4 // form [@id=’comment−form ’]
5 WARN: Error code detec ted 500
6 INFO: Request invoked f a u l t y r ep ly

24

http://localhost:3000/2009/7/16/hello-world

7 INFO: Found 1 i n v a l i d re sponse
8 INFO: Created repor t in ˜/ repor t Fr i Aug 28 17 : 0 3 : 3 3 +0200 2009 . html

Listing 4.5: Fuzzing a form using YAFT

4.4.4 Identification and categorization of flaws

As you can see in listing 4.5, the fuzzing attempt invoked a faulty response
indicated by the 500 status code. The next step is to see what caused the
invalid response.

By inspecting the error log of the application-server that is listed in appendix
C.1 . We see on line 29/31 that there was an uncatched exception caused
by a stack overflow in the RedCloth library.

RedCloth11 is a Ruby Libary for the markup language Textile12 used by
Mephisto to generate valid XHTML13.

Our generated fuzz data (see lines 2 till 7 in appendix C.1) caused the parser
in RedCloth to fall in a recursive loop that eventually resulted in a stack
overflow. Since the server still sends a response we can categorize this flaw
in E2 (Failure to check return values).

4.5 Intelligent and Unintelligent fuzzing with YAFT

We explained how we generate attack scripts using YAFT and how we de-
scribe semi-valid fuzz data for web applications using a subset of the regular
expression language.

We can use YAFT to fuzz web applications with random unintelligent fuzz
data by defining the fuzz format specification for all form fields as random.

YAFT can intelligently fuzz Ruby on Rails web applications by extracting
validators from the target application and translate them to fuzz format
specifications as seen in earlier examples (see listing 4.1).

YAFT provides an additional method of intelligent fuzzing that we will
call manually defining fuzz format specifications. This is simply manually

11RedCloth Textile for ruby: http://redcloth.org/
12The textile markup language: http://textile.thresholdstate.com/
13The Extensible HyperText Markup Language: http://www.w3.org/TR/xhtml1/

25

http://redcloth.org/
http://textile.thresholdstate.com/
http://www.w3.org/TR/xhtml1/

defining the fuzz format specifications of form fields in attack scripts.

Manually defining the fuzz format is an interactive trial and error process.
First the fuzz format of a few form fields is specified and a fuzzing attempt is
executed. By analyzing the response of the target application and inspecting
log files, we can determine if the fuzzing attempt was hindered by: validators,
the need for a specific format, or special values.

When this is the case, the fuzz format specifications are modified so that they
generate data that has greater code coverage. This process is repeated as
long as the application indicates that the processing of the form is stopped.

The manually defined specifications in the experiment performed in this
thesis are trivial but require insight about the web applications from the
tester. We eased this process by adding known valid values that are present
in the form under test as comments in the attack script.

This process can be automated to an extend, however, the response of the
target application is used to determine the fuzz format for following fuzzing
attempts. The evaluation of the fuzzing responses are hard to automate and
to our knowledge require human insight. Further research must be done to
automate this process.

26

Chapter 5

Experiment

In order to evaluate our hypothesis that more flaws will be found using IF
based on validators versus UF, we have used our fuzzing tool (YAFT) on a
set of Ruby on Rails web applications that are presented in this chapter.

5.1 Test environment

The set of web applications that are tested in this experiment are a mix of
modern open source and proprietary web applications, that use the Ruby on
Rails framework. The proprietary web applications that are tested in our
experiment are kindly provided and developed by Kabisa ICT1. Kabisa is one
of the few companies in the Netherlands that specialize in web application
development using Ruby on Rails.

In table 5.1 we give an overview of the web applications we will fuzz in this
experiment. Column 2, 3 and 4 give some metrics such as the total lines of
Ruby code (LOC) and the total number of classed and methods defined in
the projects to give an indication of the complexity. Keep in mind that Ruby
(on Rails) is a more efficient and condensed development platform than Java,
for instance. Therefore, these metrics might skew your comparison image.

1Kabisa ICT: http://kabisa.nl/

27

web application LOC #Classes #Methods Description
Channelservice.fm 2237 33 243 Used by owners of streamit inter-

net radios to manage their inter-
net radio streams. It features a so-
phisticated administration backend
for managing and auditing radios,
streams and users.

Euroflorist 4140 95 290 Webshop framework for florists to
create and manage their own web
store that is available in several lan-
guages.

Lecturis 2806 57 286 Webshop for ordering on-demand
print work.

Mephisto (v0.8) 4095 65 567 Opensource blogging system. Avail-
able at: http://mephistoblog.
com/

Typo (v5.3) 10823 169 1178 Opensource blogging system. Avail-
able at: http://wiki.github.
com/fdv/typo/

Table 5.1: web applications used in case study

28

http://mephistoblog.com/
http://mephistoblog.com/
http://wiki.github.com/fdv/typo/
http://wiki.github.com/fdv/typo/

Start

Find all forms in
web-application

Generate
unintelligent
attack script

Generate
intelligent

 attack script

Generate
intelligent

attack script

Attack scriptAttack script Attack script

All forms in
web-

application

manually define
fuzz data format

Inspect/adjust fuzz data
format based on validators

Fuzz web-
application

Fuzzing report /
exception logs

Analyse logs /
categorize

flaws
Stop

Process

Start/stop
Legenda

Document

Manual operation

Figure 5.1: Experiment workflow

The workflow of this experiment is laid out in figure 5.1. First all the
forms that are present in the web applications are detected using YAFT’s
form crawler. Then the detected forms are fuzzed using the three different
methods that are described in chapter 4.5. Finally, the detected flaws are
categorized as described in chapter 3.2 in order to measure if there is a
difference in the kind of flaws that are detected using the different fuzzing
methods.

29

web application #Forms tested #form fields #Flaws UF #Flaws IF
Channelservice 27 243 12 13
Euroflorist 16 66 1 1
Lecturis 16 78 6 7
Mephisto 18 120 4 5
Typo 19 160 4 5

Table 5.2: Fuzzing results

5.2 Results

Table 5.2 gives an overview of the results of this experiment. The first 2
columns show the number of forms and total number of form fields that
are fuzzed. This excludes forms that were dynamically generated using
Javascript/Ajax techniques since YAFTs form crawler has no support for
javascript interpretation.

The third and fourth columns of table 5.2 give the number of flaws found
using unintelligent fuzzing (UF) and validator based intelligent fuzzing (IF).

During the generation of the attack scripts for the IF experiment, there
was still a great deal of manual interaction required. The test generator
that YAFT provides, automated the translation from validator to fuzz data
format specification for many of the validators used in the tested web ap-
plications. However, more than half of the form fields tested had multiple
validators defined.YAFTs test generator is not intelligent enough to trans-
late multiple validators to fuzz data format specification. In cases like that,
the test generator will leave the fuzz data format empty for the tester to
manually define but provides some help by adding the multiple validators
as comments in the attack script.

This manual specification of fuzz data formats sparked our interest in fuzzing
using manually defined fuzz data specifications. The web applications were
fuzzed again but this time with manually defined fuzz format specifications.
The results of this experiment are listed in table 5.3.

The attack scripts with manually defined fuzz data specifications are created
by the author of this thesis, and are based on the automatically generated
intelligent attack scripts.

30

web application #Flaws UF #Flaws IF #Flaws manual fuzzing
Channelservice.fm 12 13 16
Euroflorist.fm 1 1 1
Lecturis 6 7 9
Mephisto 4 5 17
Typo 4 5 5

Table 5.3: Fuzzing results manual fuzz data specification

Fuzz method #E1 #E2 #E3
Flaws UF 0 22 5
Flaws IF 0 26 5
Flaws manual fuzzing 0 42 6

Table 5.4: Detected flaws catogorized by method

The manually defined fuzz data specifications are trivial but required some
insight in the workings of the target application. Examples for manually de-
fined fuzz data specification are: using existing database IDs and specifying
known valid values that are deduced from the target forms. As described in
chapter 4.5 this is an interactive incremental process based on trial an error
therefore it is hard to provide solid metrics for this part of the experiment.

And finally, we have the results of the categorization of the detected flaws
in table 5.4. In this table we have grouped the categorized flaws by fuzzing
method.

It is interesting to note that we did not find any occurrences of flaw category
E1 (resource exhaustion). However, we found multiple cases such as the
example we give in chapter 4.4 where the application did yield a response
but noticeably increased the load of the application server.

These kind of flaws can potentially be weaponized by sending multiple ma-
licious requests in a short time span causing the server to overload and
therefore become unable to respond to valid requests. This effectively is a
denial of service attack (DoS)2.

2Denial-of-service attack: http://en.wikipedia.org/wiki/Denial-of-service_

attack

31

http://en.wikipedia.org/wiki/Denial-of-service_attack
http://en.wikipedia.org/wiki/Denial-of-service_attack

web application Time UF Time IF Time manual fuzzing
Channelservice.fm 2:30 4:00 5:00
Euroflorist.fm 1:45 2:45 3:15
Lecturis 2:00 2:35 4:43
Mephisto 2:35 3:35 4:00
Typo 2:15 3:30 4:00

Table 5.5: Indication of time spent on fuzzing

5.3 Time indication

Table 5.5 gives a indication of the hours we spent on fuzzing each web
application. This time includes the following activities:

• Generating attack scripts

• Manually adjust the fuzz format specification of attack scripts when
needed.

• Fuzzing each form 100 times.

• Manually identifying and categorizing flaws.

This time excludes setting up the target applications and resetting the ap-
plications to a default state between UF, IF and manual fuzzing. A reset
is also, needed in case a triggered flaw causes the whole application to stop
functioning.

Note that we don’t spend any time on isolating the fuzz data that caused
flaws to trigger in order to replicate the bug without re-fuzzing. This is a
logical step after fuzzing when you are actually attempting to fix the flaw
(or exploit it).

In this thesis we have not focused on the performance of our fuzzer imple-
mentation. The speed of YAFT can be greatly improved by implementing
some of the Ruby classes in C modules. The HTTP classes and random data
generation implementations are great candidates for this. Also, some of the
manual interaction that is required in our current implementation can be
further automated. In chapter 7.1 these improvements are discussed.

The main bottleneck of fuzzing web applications is the response speed of
the application under test. Too much concurrent requests can result in the

32

target application overloading, meaning that it can’t process all the fuzzing
requests, and this makes the fuzzing process even slower.

Another bottleneck is the amount of fuzz requests that are sent to the target
application. As mentioned in chapter 4.3, we are currently sending 100
fuzzing attempts per test case. However, fewer requests with more diverse
random data might be just as effective in triggering flaws. Further research
can be done on this subject.

33

Chapter 6

Analysis and discussion

While the set of tested web applications were used in production environ-
ments, we still managed to detect 48 unique flaws using our 3 different
fuzzing methods. And as expected, when fuzz testing, the flaws that were
detected were not within the anticipated use cases of normal user behavior.

The experiment was set up to find out if more flaws are detected using our
IF method that uses validators as a base for fuzz format specification. Using
pure random UF, we managed to detect 27 flaws across the tested applica-
tions. Our IF method showed marginal improvement over UF detecting only
4 unique flaws extra while requiring substantially more manual interaction
from the tester.

This manual interaction is mainly caused by tool weakness. The extraction
of validators and translation to fuzz format specification has been automated
for most of the common validators used in the tested web applications. How-
ever, when multiple validators are defined on one form field the translation
to fuzz format specification has not be automated. More than half of the
form fields fuzzed in this experiment had multiple validators defined; this
caused the need for manual interaction. We leave the further automated
translation of multiple validators for future work.

34

6.1 Flaw categorization

Of the total 48 discovered flaws, 42 (87.5%) are of the type E2 (Failure
to check return values) meaning that many of the triggered flaws caused
exceptions that were not gracefully handled causing the end-user to see
unexpected error pages. These results indicate that return value checking
of functions and exception handling are often overlooked in the set of tested
web applications.

Since the number of unique flaws found using our IF method is very limited,
we only found 4 additional unique flaws that were not triggered during UF.
We can’t make a comprehensive analysis about the differences of flaws found
between IF and UF. However, we can say that for the extra 4 flaws that were
detected using IF, the intelligent fuzz data indeed resulted in better code
coverage passing the validators that were in place and triggering flaws that
were not found with UF.

During our IF experiments we noticed that a substantial part of fuzzing at-
tempts were ineffective and had low code coverage. These requests returned
404 HTTP status codes meaning that a resource cannot be be found. This
was caused by the need for valid database references, such as database IDs
that are found in hidden fields and select fields in the target forms.

When we manually defined the fuzz format specifications, many of these
obstacles were bypassed and this resulted in triggering 17 more flaws than
our IF method.

Our hypothesis is that if we make our current IF method smarter, by using
known valid values that are extracted from the target application, the code
coverage will be increased and more flaws will be triggered.

6.2 Threats to validity

A number of threats to validity exist with regards to this research. First
off the number of web applications tested and flaws found are in no way
comprehensive enough to give a basis for making bold statements about the
effectiveness of IF on web applications. Testing a larger set of web appli-
cations with a wide diversity of functionality will yield more comprehensive
data and a larger set of flaws to analyze.

35

Of the total 5 tested web applications 3 are developed by the same com-
pany and all the tested web applications are using the Ruby on Rails web-
framework. This might give a bias to the quality of applications and flaws
found. Also, web applications that are developed in other languages and
frameworks might give different results.

For instance, In Ruby you are not forced to catch exceptions as is the case
with Java. There might be a difference in flaws between web applications
that are build in static languages and dynamic languages since many of
the flaws we detected were caused by uncatched exceptions. Testing our IF
method on a set open source web applications that are developed in other
frameworks and languages will give a more diverse set of data to analyze and
will allow us to make statements about the effectiveness of our IF method
on web applications in general.

All of the experiments are performed by the same person including the
manual specification of the fuzz data, flaw categorization and flaw analysis.
This might have impacted the effectiveness of our method.

The effectiveness of the manual fuzzing method increases when the tester
has more knowledge about the target application. The manually defined
fuzz data specifications will have greater code coverage and will potentially
trigger more flaws.

As the person who conducted this experiment doesn’t know everything about
the tested applications, we would expect the results to improve if the exper-
iment ware conducted by testers who have in-depth knowledge about the
target applications.

36

Chapter 7

Conclusion

Our work shows that fuzzing is a cost effective method for finding flaws
in “tested and true” web applications but that intelligent fuzzing based on
validators shows marginally better results, the drawback is that it requires
more manual effort. This manual effort can be further automated, which
would make it a valuable addition to fuzzing web applications.

7.1 Proposals for future work

During the process of this research we found several improvements that will
potentially improve the effectiveness of our IF method. While our intelli-
gent fuzzing method did not yield any spectacular results, it still managed
to detect flaws that were not discovered using unintelligent fuzzing. The
following recommendations might further improve and automate intelligent
fuzzing of web applications.

• YAFT in it’s current form is only able to fuzz forms. URL parameters,
cookies and HTTP headers are also, viable vectors for UF.

• Fully automate the translation from validator to fuzz format specifi-
cation even when multiple validators are used for a field.

• Support javascript evaluation in the form crawler in order to fuzz
AJAX enabled sites.

37

• Use a proxy that captures outgoing HTTP requests and use the cap-
tured data to mutate semi-valid fuzz data.

• In order to get better code coverage, use valid values from hidden form
fields (or other fields) as values in attack scripts, or extract valid values
from the database of the target application.

• As mentioned in chapter 3.3, flaws do not always propagate immedi-
ately after a fuzzing attempt. We propose a solution for this problem
by crawling the entire web application before a fuzzing attempt in
order to check if pages that worked before are still working.

• YAFTs IF method currently only works with Ruby on Rails applica-
tions. Other web frameworks have similar validator functions that can
be used to generate semi-valid fuzz data.

• In order to increase the performance of YAFT the HTTP request
classes and random data generator classes can be implemented as C
modules.

During our experiments we found that YAFT is a valuable tool in detecting
input flaws in web applications. We plan to implement several of the sug-
gestions we made in this chapter and release an open source solution in the
near future.

38

Bibliography

[1] Banks, G., Cova, M., Felmetsger, V., Almeroth, K., Kem-
merer, R., and Vigna, G. Lncs 4176 - snooze: Toward a stateful
network protocol fuzzer. 1–16.

[2] Cuadrado, J. S., and Molina, J. G. Building domain-specific lan-
guages for model-driven development. IEEE SOFTWARE (Aug 2007),
1–8.

[3] Fielding, R. T. Architectural styles and the design of network-based
software architectures. 1–180.

[4] Forrester, J. E., and Miller, B. P. An empirical study of the
robustness of windows nt applications using random testing. 1–10.

[5] Hammersland, R. Finding weaknesses in web applications through
the means of fuzzing. 1–88.

[6] Hammersland, R., and Snekkenes, E. Fuzz testing of web appli-
cations. 1–6.

[7] Hieatt, E., Mee, R., and Evant. Going faster: Testing the web
application. IEEE SOFTWARE March/April 2002 (Feb 2002), 1–6.

[8] Howard, M., and Lipner, S. Inside the windows security push.
IEEE SECURITY & PRIVACY (Jan 2003), 1–5.

[9] Howard, M., and Whittaker, J. Violating assumptions with
fuzzing. IEEE SECURITY &PRIVACY, MARCH/APRIL (Mar 2005),
1–5.

[10] Keil, S., and Kolbitsch, C. Stateful fuzzing of wireless device
drivers in an emulated environment. 1–11.

39

[11] Lipner, S., and Howard, M. The trustworthy
computing security development lifecycle, March 2005.
http://msdn.microsoft.com/en-us/library/ms995349.aspx.

[12] Luccaa, G. A. D., and Fasolinob, A. R. Testing web-based ap-
plications: The state of the art and future trends. Information and
Software Technology 48 (Aug 2006), 1–15.

[13] Maxwell, S. A. The bulletproof penguin, August 2001.
http://home.pacbell.net/s-max/scott/bulletproof-penguin.html.

[14] Miller, B. P., Cooksey, G., and Moore, F. An empirical study
of the robustness of macos applications using random testing. 1–9.

[15] Miller, B. P., Fredriksen, L., and So, B. An empirical study of
the reliability of unix utilities. 1–22.

[16] Miller, B. P., Koski, D., Lee, C. P., Maganty, V., Murthy,
R., Natarajan, A., and Steidl, J. Fuzz revisited: A re-examination
of the reliability of unix utilities and services. 1–23.

[17] Miller, C., and Peterson, Z. N. J. Analysis of mutation and
generation-based fuzzing. 1–7.

[18] Richardson, C. Orm in dynamic languages. Commun. ACM 52, 4
(Apr 2009), 48.

[19] Stuttard, D., and Pinto, M. The web application hacker’s hand-
book. 1–771.

[20] Su, Z., and Wassermann, G. The essence of command injection
attacks in web applications. 1–11.

[21] Xiao, S., Deng, L., Li, S., and Wang, X. Integrated tcp/ip protocol
software testing for vulnerability detection. Proceedings of the 2003 In-
ternational Conference on Computer Networks and Mobile Computing
(Oct 2003), 1–9.

40

Appendix A

Pre-condition login script

1 @browser . get (’ http :// l o c a l h o s t :3000/ account / l o g i n ’) do | page |
2 l o g i n = page . form with (: a c t i on => ’ / account / l o g i n ’) do | l og |
3 log [’ l o g i n ’] = ’ admin ’
4 l og [’ password ’] = ’ t e s t ’
5 end . submit
6 end

Listing A.1: pre-condition login script

41

Appendix B

A generated attack script

1 TestForm [” http :// l o c a l h o s t :3000/2009/7/16/ he l l o−world ” , ”// form [@id=’comment−form ’] ”] do
2 name ””
3 ac t i on ” /2009/7/16/ he l l o−world /comments#comment−form”
4 method ” post ”
5 p o s t c o n d i t i o n s : n o i n v a l i d s t a t u s c o d e s
6 cook i e ” c6d4360ed44b9c8a7d31924177d6b9121dcd713a\n”
7
8 f i e l d s do
9 input ’ comment [author] ’ , random #va l i d a t e s p r e s e n c e o f : author

10 input ’ comment [author emai l] ’ , /\w{1 ,10}@\w{1 ,10}\ .\w{2}/ #va l i d a t e s f o rma t o f : author emai l , : wi th => /\w{1 ,10}@\w{1 ,10}\ .\w{2}/
11 input ’ comment [a u th o r u r l] ’ , random #””
12 input ’ submit ’ , random #”Submit Comment”
13 input ’ comment [body] ’ , random #””
14 end
15 end

Listing B.1: Generated attack script

42

Appendix C

Server logs during a
successful fuzzing attempt

1 Proce s s ing Mephis toContro l l e r#di spa t ch (f o r 127 . 0 . 0 . 1 at 2009−08−28 17 :03 :27) [POST]
2 Parameters : {”comment”=>{” author ”=>”\243\201\016\215\a%p??\016\230\376 ?Y o” ,
3 ”body”=>”\227?{v\025??? \207\263\224\004? j3 \231\254\234; z \00.\200}ˆu\271Q?y?” ,
4 ” author emai l ”=>” a43r je i r@vgh7fghg26f rew . s i ” ,
5 ” a u th o r u r l ”=>” (X\2\271Q?y?” } ,
6 ” submit”=>” [\000?Z?\367” ,
7 ” ac t i on ”=>” d i spatch ” ,
8 ”path”=>[”2009” , ”7” , ”16” , ” he l l o−world ” , ”comments”] ,
9 ” c o n t r o l l e r ”=>” mephisto ” }

10 S i t e Columns (2 . 6ms) SHOW FIELDS FROM ‘ s i t e s ‘
11 S i t e Load (2 . 4ms) SELECT ∗ FROM ‘ s i t e s ‘ WHERE (‘ s i t e s ‘ . ‘ host ‘ = ’ l o c a l h o s t ’)
12 LIMIT 1
13 S i t e Load (0 . 2ms) SELECT ∗ FROM ‘ s i t e s ‘ ORDER BY id LIMIT 1
14 A r t i c l e Load (0 . 5ms) SELECT ∗ FROM ‘ contents ‘ WHERE (‘ contents ‘ . s i t e i d = 1)
15 AND ((‘ contents ‘ . ‘ type ‘ = ’ A r t i c l e ’))
16 A r t i c l e Load (0 . 5ms) SELECT ∗ FROM ‘ contents ‘ WHERE (‘ contents ‘ . s i t e i d = 1
17 AND ((contents . pub l i sh ed a t IS NOT NULL AND contents . pub l i sh ed a t <=
18 ’ 2009−08−28 15 : 03 : 27 ’) AND (contents . pub l i sh ed a t BETWEEN ’ 2009−07−16 00 : 00 : 00 ’
19 AND ’ 2009−07−16 23 : 59 : 59 ’) AND (contents . permalink = ’ he l l o−world ’))) AND (
20 (‘ contents ‘ . ‘ type ‘ = ’ A r t i c l e ’))
21 ORDER BY pub l i shed a t desc LIMIT 1 Comment Columns (2 . 8ms) SHOW FIELDS
22 FROM ‘ contents ‘
23 A r t i c l e Load (0 . 7ms) SELECT ∗ FROM ‘ contents ‘ WHERE (‘ contents ‘ . ‘ id ‘ = 1)
24 AND ((‘ contents ‘ . ‘ type ‘ = ’ A r t i c l e ’))
25 S i t e Load (0 . 3ms) SELECT ∗ FROM ‘ s i t e s ‘ WHERE (‘ s i t e s ‘ . ‘ id ‘ = 1)
26 SQL (0 . 1ms) BEGIN
27 SQL (0 . 2ms) ROLLBACK
28

43

29 SystemStackError (s tack l e v e l too deep) :
30 / vendor /gems/RedCloth−3.0.4/ l i b / r edc l o th . rb : 9 9 8 : in ‘ g l y p h s t e x t i l e ’
31 / vendor /gems/RedCloth−3.0.4/ l i b / r edc l o th . rb : 9 8 9 : in ‘ gsub ! ’
32 ## shor tened f o r t h i s r epea t s f o r over 9000 l i n e s !
33
34 Rendered / opt / l o c a l / l i b /ruby/gems /1 .8/ gems/ act ionpack −2.2.2/ l i b / a c t i o n c o n t r o l l e r /
35 templates / r e s c u e s / t r a c e (5589 .4ms)
36 Rendered / opt / l o c a l / l i b /ruby/gems /1 .8/ gems/ act ionpack −2.2.2/ l i b / a c t i o n c o n t r o l l e r /
37 templates / r e s c u e s / r e q u e s t a n d r e s p o n s e (4 1 . 5ms)
38 Rendering / opt/ l o c a l / l i b /ruby/gems /1 .8/ gems/ act ionpack −2.2.2/ l i b / a c t i o n c o n t r o l l e r /
39 templates / r e s c u e s / layout . erb (i n t e r n a l s e r v e r e r r o r)
40 load ing from a p p l i c a t i o n : a p p l i c a t i o n h e l p e r
41 SQL (0 . 2ms) SET NAMES ’ ut f8 ’
42 SQL (0 . 1ms) SET SQL AUTO IS NULL=0
43 A r t i c l e Columns (3 . 0ms) SHOW FIELDS FROM ‘ contents ‘
44 SQL (1 . 1ms) SHOW TABLES
45 load ing from a p p l i c a t i o n : m e p h i s t o c o n t r o l l e r
46 load ing from a p p l i c a t i o n : meph i s to he lper

Listing C.1: Ruby on Rails log file (shortened for layout reasons)

44

	Preface
	Introduction
	Motivation
	Research Questions

	Background
	Practical fuzzing successes
	Fuzzer types
	Semi-valid fuzz data generation
	Fuzz data for web applications

	Research method
	Intelligent fuzz data generation using validators
	Analysing web fuzzing results
	Expected flaws and categorization

	YAFT: Yet Another Fuzzing Tool
	Form crawler
	Script generator
	Fuzz data generation

	Form fuzzer
	YAFT in action
	Finding forms to fuzz
	Generating an attack script
	Exercising forms
	Identification and categorization of flaws

	Intelligent and Unintelligent fuzzing with YAFT

	Experiment
	Test environment
	Results
	Time indication

	Analysis and discussion
	Flaw categorization
	Threats to validity

	Conclusion
	Proposals for future work

	Bibliography
	Pre-condition login script
	A generated attack script
	Server logs during a successful fuzzing attempt

